CROSBY	C Prima
	l Curriculun .earning)
accomplisi controlling	write, and debuth specific goals or simulating plems by decom
programs;	uence, selectio work with varia put and output
simple alg	cal reasoning to orithms work a ors in algorithm
software (i range of di a range of that accom collecting, presenting	use, and combined use, and combined use including internigital devices to programs, syspolish given go analysing, evaludata and infor lum Links
Fa Science	co (circuite) DT

Crosby ary School

Computing Medium Term Plan Year 5/6 - Spring Term

Unit 5.3 Programming A – (6 Weeks) Selection in physical computing

- ug programs that , including physical systems; posing them into
- on, and repetition in ables and various
- to explain how some nd to detect and ns and programs.
- ine a variety of et services) on a design and create tems, and content als, including luating, and mation.

Eg. Science (circuits) DT Design, make and evaluate

I can explain what an infinite loop does

Prior Knowledge This is a new unit.

Assessment: Via observation and end product . For example visit lesson 5

Resources Visit: Teach it website for For Unit Plan, Lesson Plans unit plans and Learning Graphs https://teachcomputing.org/curriculum/key-stage-2/programming-aselection-in-physical-computing

Vocabulary Generic vocabulary: battery, blocks, browser, code, coding, count, connection, crocodile clips, device, evaluate. LED, program, repetition, switch and usb cable.

New Topic vocabulary:

Algorithm-an algorithm is a list or set of instructions, used to solve problems or perform tasks.

Input:A place where, or a device through which, energy or information enters a system. The signal being fed through the main input.

Components: A part or element of a larger whole, especially a part of a machine.

Code: Program instructions.

Count controlled loop: A system made up of hardware components and software control functions needed for the measurement & adjustment of a variable.

Condition: A condition is a statement that can be either true or false.

Crumble: A crumble is an electronics controller that connects to a computer using a USB cable.

Infinite Loop: A sequence of instructions in a computer program which loops endlessly.

Input- a place where, or a device through which, energy or information enters a system. The signal being fed through the main input. Microcontroller: A small device that is designed & can be programmed to control components that are connected to it. (Also known as a compact integrated circuit designed to govern a specific operation in an embedded system).

Motor: A machine, especially one powered by electricity that supplies motive power for a vehicle or for another device with moving parts.

Output: A place where power or information leaves a system.

Program: A series of coded software instructions to control the operation of a computer or other machine.

Selection-A programmer might want a set of actions to be carried out if a condition is met. Sparkle: A multi-colour LED designed to work with the Crumble.

Lesson Sequence							
Learning Objective/Success Criteria	Core Knowledge	Additional Information					
L1 Connecting Crumbles LO To control a simple circuit connected to a computer Success criteria: I can create a simple circuit and connect it to a microcontroller I can program a microcontroller to make	Procedural Knowledge (Skills): Choose a condition to use in a program. Create a condition controlled loop. Use a condition in an 'if then' statement to start an action; • selection	L1 See lesson plan https://teachcomputing.org/curriculum/key-stage-2/programming-a-selection-in-physical-computing/connecting-crumbles					
an LED switch on	to switch program flow; • 'if then else						

L2 Combining output components

LO To write a program that includes count-controlled loops

Success criteria:

I can connect more than one output component to a microcontroller I can use a count-controlled loop to control outputs

I can design sequences that use count-controlled loops

L3 Controlling with conditions

LO To explain that a loop can stop when a condition is met

Success criteria:

I can explain that a condition is either true or false

I can design a conditional loop

I can program a microcontroller to respond to an input

L4 Starting with selection

LO To explain that a loop can be used to repeatedly check whether a condition has been met

Success criteria:

I can explain that a condition being met can start an action

I can identify a condition and an action in my project

I can use selection (an 'if...then...' statement) to direct the flow of a program

L5 Drawing designs

LO To design a physical project that includes selection

Success criteria:

I can identify a real-world example of a condition starting an action

I can describe what my project will do

I can create a detailed drawing of my project

L6 Writing and testing algorithms

LO To create a program that controls a physical computing project

Success criteria:

I can write an algorithm that describes what my model will do

I can use selection to produce an intended outcome

I can test and debug my project

to switch program flow in one of two ways.

Propositional Knowledge (Concepts):

Relate that a count controlled loop contains a condition.

Compare a count controlled loop with a condition-controlled loop.

Explain that:

- a condition can only be true or false;
- a condition-controlled loop will stop when a condition is met;
- when a condition is met a loop will complete a cycle before it stops;
- selection can be used to branch the flow of a program;
- a loop can be used to repeatedly check whether a condition has been met;
- the importance of instruction order in 'if... then... else...' statements.

L2 See lesson plan and presentation

https://teachcomputing.org/curriculum/key-stage-2/programming-a-selection-in-physical-computing/combining-output-components

L3 See lesson plan and presentation

https://teachcomputing.org/curriculum/key-stage-2/programming-a-selection-in-physical-computing/controlling-with-conditions

Use Key Question

What information did you need to know to carry out the commands?

L4 See lesson plan and presentation

https://teachcomputing.org/curriculum/key-stage-2/programming-a-selection-in-physical-computing/starting-with-selection

Use Key Questions

Can you identify the condition in the algorithm and program? What condition might have been met for someone to drink a glass of water? How could you represent this using selection?

L5 See Lesson plan and presentation

https://teachcomputing.org/curriculum/key-stage-2/programming-a-selection-in-physical-computing/drawing-designs

Key Q How will their output devices be used? How is selection used?

Key statement .Use the **if...then...** structure to write an algorithm to show how selection might be used in an automated house.Ideas:Curtains or blinds, Heating or cooling or using Taps

L6 See Lesson plan and presentation

https://teachcomputing.org/curriculum/key-stage-2/programming-a-selection-in-physical-computing/writing-and-testing-algorithms

Use Key statements

TEST, DE-BUG, EVALUATE